data-pipelines-cli

GetinData

Dec 16, 2022

1 Introduction
2 Community
Python Module Index

Index

CONTENTS:

49

51

data-pipelines-cli

CONTENTS: 1

https://github.com/getindata/data-pipelines-cli
https://pypi.org/project/data-pipelines-cli/
https://pepy.tech/project/data-pipelines-cli
https://codeclimate.com/github/getindata/data-pipelines-cli/maintainability
https://codeclimate.com/github/getindata/data-pipelines-cli/test_coverage

data-pipelines-cli

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

Data Pipelines CLI, also called DP tool, is a command-line tool providing an easy way to build and manage data
pipelines based on dbt in an environment with GIT, Airflow, DataHub, VSCode, etc.

The tool can be used in any environment with access to shell and Python installed.

data-pipelines-cli’s main task is to cover technical complexities and provides an abstraction over all components that
take part in Data Pipelines creation and execution. Thanks to the integration with templating engine it allows Analytics
Engineers to create and configure new projects. The tool also simplifies automation as it handles deployments and
publications of created transformations.

data-pipelines-cli

4 Chapter 1. Introduction

CHAPTER
TWO

COMMUNITY

Although the tools were created by GetInData and used in their project it is open-sourced and everyone is welcome to
use and contribute to making it better and more powerful.

2.1 Installation

Use the package manager pip to install data-pipelines-cli:

pip install data-pipelines-cli[<flags>]

Depending on the systems that you want to integrate with you need to provide different flags in square brackets. You
can provide comma separate list of flags, for example:

pip install data-pipelines-cli[gcs,git,bigquery]

Depending on the data storage you have you can use:
* bigquery
* snowflake
* redshift
* postgres
If you need git integration for loading packages published by other projects or publish them by yourself you will need:
e git
If you want to deploy created artifacts (docker images and DataHub metadata) add the following flags:
e docker
¢ datahub
These are not usually used by a person user.
If you need Business Intelligence integration you can use following options:

¢ Jooker

https://getindata.com/
https://pip.pypa.io/en/stable/
https://pypi.org/project/data-pipelines-cli/

data-pipelines-cli

2.2 Setup an environment

This section is for Data Engineers who will be preparing and administrating the whole environment. It describes steps
that should be done to prepare the DP tool to be used in an organization with full potential.

2.2.1 Create Data Pipeline project template

The first thing that you need to do is to create a git repository with a project template used later to create multiple
projects. The template should contain the whole directory structure and files used in your projects. Additionally, it
should have a connection configuration to all components in your environment, CICD, and all other aspects specific to
your company. Here you can find templates examples that you can adjust to your need: https://github.com/getindata/
data-pipelines-template-example . Based on the template The Data Pipelines CLI will ask a user a series of questions
to build the final project.

Thanks to the copier you can leverage Jinja template syntax to create easily modifiable configuration templates. Just
create a copier.yml and configure the template questions (read more at copier documentation).

2.2.2 Create a template to setup a local environment

Working with Data Pipelines usually requires local variables to be set to run and test avoiding messing in shared
environments (DEV, STAGE, PROD). To simplify working environment preparation we also decided to use templates
that will ask a series of questions and generate local configuration in a home directory.

It requires a repository with a global configuration template file that you or your organization will be using. The
repository should contain dp.yml. tmpl file looking similar to this:

_templates_suffix: “.tmpl” _envops:

autoescape: false block_end_string: “%]” block_start_string: “[%” comment_end_string:
“#]” comment_start_string: “[#” keep_trailing_newline: true variable_end_string: “]]” vari-
able_start_string: “[[”

templates:

my-first-template: template_name: my-first-template template_path: https://github.
com/<YOUR_USERNAME>/<YOUR_TEMPLATE>.git

vars: username: [[YOUR_USERNAME]]

The file must contain a list of available templates. The templates will be displayed and available for selection in Data
Pipelines CLI. The next section contains variables that will be passed to the project whenever running in the configured
environment. The same rules apply in template creation as for project templates.

6 Chapter 2. Community

https://github.com/getindata/data-pipelines-template-example
https://github.com/getindata/data-pipelines-template-example
https://copier.readthedocs.io/en/stable/configuring/#the-copieryml-file/
https://github.com
https://github.com

data-pipelines-cli

2.3 Usage

This section is for Data Pipelines CLI’s users. It will present how to use the tool and how it handles interaction
with the whole Data environment. Below diagram presents the sequence process how usually the toole is used and
order in which different commands are executed:

If first time on workbentch IJ u l
___________ el =
L I
I —_—

2.3.1 Preparing working environment

The first thing that needs to be done when starting Building Data Pipelines is to prepare the working environ-
ment. This step can be done either on a local machine on any kind of Workbench (eg. JupyterLab). You will
need a link from your Data Engineer or Administrator to the template with initial configuration then, run dp init
<CONFIG_REPOSITORY_URL> to initialize dp. You can also drop <CONFIG_REPOSITORY_URL> argument, dp will get
initialized with an empty config.

This step is done only the first time for each working environment you want to use.
Example:

In this example only one variable you will be asked for and it is going to be username which is used in many dp
commands.

dp init https://github.com/getindata/data-pipelines-cli-init-example

2.3. Usage 7

data-pipelines-cli

Workbench - Vertex Al-« x [ESESNEYIUELY x v - 8 ®

< c & 4 1.notebooks m/lab

M GID-DataOps MW PlumResearch M Harvest_projekt B CyberSyn
Z File Edt View Run Kemel Git Tabs Sefings Help
» Bt C ¢ | Biowan@516583006066: /noix
(base) : s
A] (base) : s
(=] . (base) s
(base) : i $ dp init https://github. com/getindata/data-pipelines-cli-init-exanple
° Name - LastModiiea || No 01t tags found in template; using HEAD as ref
usernane? Format: str
ZNone] : andrzejd

(base) : s

= (base) : 3§
(base) : s

»

Simple 1Mo @& @ jovyan@516583006066: Mome/jupyter

2.3.2 Project creation
You can use dp create <NEW_PROJECT_PATH> to choose one of the templates to create the project in the
<NEW_PROJECT_PATH> directory.

You can also use dp create <NEW_PROJECT_PATH> <LINK_TO_TEMPLATE_REPOSITORY> to point directly to a
template repository. If <LINK_TO_TEMPLATE_REPOSITORY> proves to be the name of the template defined in dp’s
config file, dp create will choose the template by the name instead of trying to download the repository.

After the template selection, you will be asked a series of predefined questions in the template. Answering them all

will cause a new empty project to be generated. The project will be adjusted and personalized based on answers to the
questions.

Example:

Following command starts project creation process.

dp create our-simple-project

Fist step after this command is template selection:

8 Chapter 2. Community

data-pipelines-cli

@ Google Chrome ~

Workbench -Vertex Al- x [SENINENELY

<_ e a d 1.notebooks m/lab >% O »= 08

g M GID-DataOps MW PlumResearch M Harvest_projekt [Cybersyn

= Fle Edt View Run Kemel Gt Tabs Setings Hep

S T —— o
--B!coﬂwf‘"@ x o

Q (base) :~$ dp create our-simple-project
(Use arrou keys)
o . » first-steps-with-data-pipelines
é pipeline-project
¢ ' - Last Modified
e
& E
1]
Simple 1Mo e © jovyan@1920f941a389: ~

We can switch options by pressing up and down buttons and we can make a decision by pressing enter. After that, series
of questions will be asked. Be aware that the name of the DP project should be composed of alpha-numeric signs and
the _ sign. After answering these questions the tool will generate complete project.

c>c a 4 1.notebook: m/lab > % oa09

M GID-DataOps MM PlumResearch M Harvest_projekt W Cybersyn

et Vew Run Kemel Gt Tabs Setngs Hep

™ - Bt ¢ ¢ | Bjowan@f0041a389: ~ % .
o | | (base) +-§ dp create our-simple-project
o . No git tags found in template; using HEAD as ref
Name - LastModified || Mame <1 the project (use alphanueric characters with)
& project_name? Format: str
Zlny_new_project]: our_simple project

Skort project aescription
project_description? Format: str
ZlProject for transforming datal:

» Froject ia usea in GCF
gep_project_id? Format: str
[None] : dataops-demo-342817

Curer of the pipeline in airdlon
pipeline_owner? Format: str
/[Data0ps Tean]:

Cron expression
schedule_interval? Fornat: str
Ao 12 = =+

Dockerfile
READHE .nd

. copier-ansuers.ynl
_gitlab-ci.ynl
dbt_project.yml

packages. ynl

_gitignore

copier.yml

models/

models/ .gitkeep
models/reports/
models/reports/reports.ynl
models/reports/custoners_report. sql
snapshots/

snapshots/ . gitkesp

docs/

docs/seeds.nd
docs/reports.md
docs/.gitkeep

dag/

dag/dag.py

config/

config/local/
config/local/dbt.ynl
config/local/bigquery.ynl
config/base,/
config/base/airflow.yml
config/base/dbt.ynl
config/base/datahub .yl
config/base,/publish.yml
config/base/bigquery.yl .

Simple 1Mo & & jovyan@f920941a389: ~

2.3. Usage 9

data-pipelines-cli

2.3.3 Adapting working environment to VSCode

VSCode is recommended tool to work with dbt as you can add a plugin that makes the work more efficient. To configure
the plugin or integrate it with some other standalone application you will need to generate profiles.yml file from the
project. dp prepare-env prepares your local environment to be more conformant with standalone dbt requirements
by saving profiles.yml in the home directory.

However, be aware that IDE usage is optional, and you can comfortably use dp run and dp test commands to inter-
face with the dbt instead.

2.3.4 List all available templates

Execute dp template-list to list all added templates.

2.3.5 Project update

Whenever the template change you can update your project using dp update <PIPELINE_PROJECT-PATH> com-
mand. It will sync your existing project with the updated template version selected by --vcs-ref option (default
HEAD).

It may be very useful when the are some infrastructure changes in your organization and you need to upgrade all created
projects (there can be hundreds of them).

2.3.6 Project compilation

dp compile prepares your project to be run on your local machine and/or deployed on a remote one.

2.3.7 Local run

When you get your project created, you can run dp run and dp test commands.
e dp run runs the project on your local machine,
* dp test run tests for your project on your local machine.
Both commands accept --env parameter to select the execution environment. The default value is 1local.

Example:

dp run

This process will look at the contents of the models directory and create coresponding tables or views in data storage.

10 Chapter 2. Community

data-pipelines-cli

<« c & 4 1 notebook m/lab > a0

SQL workspa

B GID-DataOps Mm PlumResearch M Harvest_projekt B CyberSyn
Fle Edit View Run Kemel Git Tabs Settings Help
» - Bt C ¢ Biowan@o20941a389: ~jou X "

o] | omae:e2
gezdacez Completed successfully
o e

Garioron Done. pass-
e)

ERROR-0 SKIP-0 TOTAL-2
Name - Last Modified our-sinple-projects
-four-sinple-project$

(b
® (base) i~/our-sinple-projects dp
Copying -config: diractory <o /hameJovyon,our-SimpLe-project/build,dag/config

The tool has run across a following error when trying to get Git revision hash. Ensure your project is a Git repository (run 'git init*, if not).
fatal: not a git repository (or any of the parent directories):

AGE.

Replacing G> with inage tag = None
Replacing Jinja variables in /home/jovyan,/our-sinple-project/build/dag/config/base/datahub. ynl.
Generating profiles.ynl

Running dbt commands:

08:40:12 Running with dbt=
08:40:13 Installing dbt- Lzbs/dbt utils
08:49:14 Installed from version 0.8.0
08:40 Updated version available: 0.8.6
08:40:14 Installing calogica/dbt expectations
08:40:14 Installed from version 0.5.8

2 4 Up to date!

08:40:14 Installing dbt-labs/codegen
3:40:14 Installed from version 0.6.0
03:40:14 Up to date!

08:40:14 Installing calogica/dbt_date
08:40:14 Installed from version 0.5.7
08:40:14 Up to date!
08:40:14

03:40:14 Updates available for packages: ['dbt-labs/dbt utils']
Update your versions in packages.ynl, then run dbt deps

08:40:18 Running with dbt=1.0.4
48518 Found 1 nodel, 1 test, © snapshots, © analyses, 583 macros, © operations, 2 seed files, © sources, 0 exposures, 0 metrics

i m Concurrency: 1 threads (target="local’)
Goudai18 Done.

8:40:22 Running with dbt=1.0.4
0:22 Found 1 model, 1 test, @ snapshets, © analyses, 583 macros, @ operations, 2 seed files, @ sources, @ exposures, 0 metrics

ﬂ 40:22
08:40122 Concurrency: 1 threads (target="local’)
esisoiz2

P uilding catalog
Geidors (mmg written to /home/jovyan/our-sinple-project/target/catalog.json

08:49:29 Running with dbt=1.0.4
08:49:29 Found 1 model, 1 test, O snapshots, © analyses, 583 macros, O operations, 2 seed files, © sources, @ exposures, 0 metrics .

Simple 1Mo @& @ jovyan@1920941a389: ~/our-simple-project

Now after all the tables and views are created we can also check, if the models work as intended by running the tests.

dp test

workspa

¢« >c a 4 1 notebook: m/lab > % o»09 :

M GID-DataOps MW PlumResearch M Harvest_projekt W Cybersyn

Z Fle Edt View Run Kemel Git Tabs Setings Help

08:41:40 Running with dbt=
o 1:41 Installing dbt- Lzhs/dht utils

Jovyan@f920941a380:

- 42 Installed from version 0.8.0
R G641z Updated version ovailable:
& Name LastModiied | gg.41:42 Instzlhng calogica/dbt expsctztmns

08:41: alled fron version 0

o Up 1o dote

o Instzlhng dbt-Labs/codegen

o Installed from version 0.6.0

o o date!

o Installing calogica/dbt_date

» o Installed from version 0.5.7

o Up to datet

08:41:42

08:41:42 Updates available for packages: ['dbt-labs/dbt utils']

u our versions in packages.ynl, then run dbt deps
Running with dbt=1.0.4
Found 1 model, 1 test, © snapshots, © analyses, 583 macros, @ operations, 2 seed files, © sources, @ exposures, @ metrics
Concurrency: 1 threads (target='local’)
Done.
Running with dbt=1.0.4
Found 1 model, 1 test, 0 snapshots, © analyses, 583 macros, O operations, 2 seed files, O sources, © exposures, 0 metrics
Concurrency: 1 threads (target='local’)
Done.
Building catalog
Catalog written to /home/jovyan/our-sinple-project/target/catalog. json
Running with dbt-1.0.4
Found 1 model, 1 test, © snapshots, © analyses, 583 macros, @ operations, 2 seed files, B sources, @ exposures, @ metrics

ARNTNG]: Nothing to do. Try checking your model configs and model specification args

Done.
T manifest
Running with dbt=1.0.4
Found 1 model, 1 test, © snapshots, © analyses, 583 macros, @ operations, 2 seed files, © sources, @ exposures, @ metrics
Concurrency: 1 threads (target='local’)
1 of 1 START test assert active_customers_in every_country. . RuN]
1 of 1 PASS assert_active customers_in every_country. © [PASS in 1.415]
Finished running 1 test in 1.69s.
Completed successfully

08:42:02

08:42:62 Done. PASS=1 WARN=8 ERROR-O SKIP=0 TOTAL=L

(base) our-sinple-project$

Simple 1Mo & & jovyan@#920941a389: ~Jour-simple-project

2.3. Usage 11

data-pipelines-cli

2.3.8 dbt sources and automatic models creation

With the help of dbt-codegen and dbt-profiler, one can easily generate source.yml, source’s base model SQLs, and
model-related YAMLs. dp offers a convenient CLI wrapper around those functionalities.

First, add the dbt-codegen package to your packages.yml file:

packages:
- package: dbt-codegen
version: 0.5.0 # or newer

Then, run dp generate source-yaml YOUR_DATASET_NAME to generate source.yml file in models/source di-
rectory. You can list more than one dataset, divided by space. After that, you are free to modify this file.

When you want to generate SQLs for your sources, run dp generate source-sql. It will save those SQLs in the
directory models/staging/YOUR_DATASET_NAME.

Finally, when you have all your models prepared (in the form of SQLs), rundp generate model-yaml MODELS_DIR
to generate YAML files describing them (once again, you are not only free to modify them but also encouraged to do
so!). E.g., given such a directory structure:

models

|— staging

| L—my_source

| |— stg_tablel.sql

| L— stg_table2.sql

|— intermediate

| — intermediatel.sql
| — intermediate2.sql
| L— intermediate3.sql
L— presentation

L presentation1.sql

dp generate model-yaml models/ will create models/staging/my_source/my_source.yml, models/
staging/intermediate/intermediate.yml, and models/presentation/presentation.yml. Beware,
however, this command WILL NOT WORK if you do not have those models created in your data warehouse already.
So remember to run dp run (or a similar command) beforehand.

If you add the dbt-profiler package to your packages.yml file too, you can call dp generate model-yaml
--with-meta MODELS_DIR. dbt-profiler will add a lot of profiling metadata to descriptions of your models.

12 Chapter 2. Community

https://hub.getdbt.com/dbt-labs/codegen/
https://hub.getdbt.com/data-mie/dbt_profiler/

data-pipelines-cli

2.3.9 Project deployment

dp deploy executes the deployment of a project. Depending on the configuration the command may execute different
steps described in this section. Please be aware that this command is meant for the CICD process and usually should
be avoided as manual activity.

Blob storage synchronization

The main action of the dp deploy command is synchronization with your bucket provider. The provider will be
chosen automatically based on the remote URL. Usually, it is worth pointing dp deploy to a JSON or YAML file
with provider-specific data like access tokens or project names. The provider-specific data should be interpreted as the
**kwargs (keyword arguments) expected by a specific fsspec’s FileSystem implementation. One would most likely
want to look at the S3FileSystem or GCSFileSystem documentation.

E.g., to connect with Google Cloud Storage, one should run:

echo '{"token": "<PATH_TO_YOUR_TOKEN>", "project_name": "<YOUR_PROJECT_NAME>"}' > gs
—.args.json
dp deploy --dags-path "gs://<YOUR_GS_PATH>" --blob-args gs_args.json

However, in some cases, you do not need to do so, e.g. when using gcloud with properly set local credentials. In such
a case, you can try to run just the dp deploy --dags-path "gs://<YOUR_GS_PATH>" command and let gcsfs
search for the credentials. Please refer to the documentation of the specific f£sspec’s implementation for more infor-
mation about the required keyword arguments.

You can also provide your path in the config/base/airflow.yml file, as a dags_path argument:

dags_path: gs://<YOUR_GS_PATH>
... rest of the 'airflow.yml' file

In such a case, you do not have to provide a --dags-path flag, and you can just call dp deploy instead.

Docker image
dp deploy command builds Docker image with dbt and project and sends it go Docker Registry. Docker registry

may be configured via Environment Variables (eg. DOCKER_AUTH_CONFIG) and the image repository can be
configured in execution_env.yml file. Use --docker-push flag to enable docker pushing during deployment.

DataHub synchronization

The deployment also sends metadata to DataHub based on receipt created in datahub.yml file. Use
--datahub-ingest flag to enable DataHub synchronization.

2.3. Usage 13

https://filesystem-spec.readthedocs.io/en/latest/
https://s3fs.readthedocs.io/en/latest/api.html#s3fs.core.S3FileSystem
https://gcsfs.readthedocs.io/en/latest/api.html#gcsfs.core.GCSFileSystem

data-pipelines-cli

2.3.10 Packing and publishing

Sometimes there is a need to reuse data created in other projects and/or by a different team. The built project can be
converted to a dbt package by calling dp publish. dp publish parses manifest.json and prepares a package
from the presentation layer. It lists models created by transformations and they usually are a final product of a project.
The models are prepared in form of dbt sources. Created metadata files are saved in the build/package directory
and sent to a git repository configured in publish.yml file.

Publication repo usually is private for a company and appropriate permissions are required. We recommend key-based
communication. You can use --key-path as a parameter to point to the key file with push permissions.

Using published sources

Published packages can be used as standard dbt packages by adding them in packages.yml in the following form:

packages:
- git: "https://{{env_var('DBT_GIT_USER_NAME', '')}}:{{env_var('DBT_GIT_SECRET_TOKEN', '
—')}}@gitlab.com/<path to you repository>"

subdirectory: "<upstream project name>"

Dependencies metadata

Created metadata files containing extra information about the project name (which can be also Airflow DAG name).

"source_meta": {
"dag": "<project name>"

}

This way explicit dependencies can be created in the execution environment. For more information see the documenta-
tion of dbt-airflow-factory <https://dbt-airflow-factory.readthedocs.io/en/latest/features.html#source-dependencies>

2.3.11 Clean project

If needed call dp clean to remove compilation-related directories.

2.3.12 Load seed

One can use dp seed to load seeds from the project. Use --env to choose a different environment.

2.3.13 Serve documentation

dbt creates quite good documentation and sometimes it is useful to expose them to your coworkers on a custom port.
To do that you can run dbt docs --port <port>command.

14 Chapter 2. Community

data-pipelines-cli

2.4 Project configuration

dp as a tool depends on a few files in your project directory. It must be able to find a config directory with a structure
looking similar to this:

config

|— base
| |— dbt.yml

| — bigquery.ymldbt2

|— de
| L— bigquery.yml
| — local
| |— dbt.yml
| L— bigquery.yml
L— prod
L— bigquery.yml

Whenever you call dp’s command with the --env <ENV> flag, the tool will search for dbt . yml and <TARGET_TYPE>.
yml files in base and <ENV> directory and parse important info out of them, with <ENV> settings taking precedence
over those listed in base. So, for example, for the following files:

config/base/dbt.yml
target: env_execution
target_type: bigquery

config/base/bigquery.yml
method: oauth

project: my-gcp-project
dataset: my-dataset
threads: 1

cat config/dev/bigquery.yml
dataset: dev-dataset

dp test --env dev will run dp test command using values from those files, most notably with dataset:
dev-dataset overwriting dataset: my-dataset setting.

dp synthesizes dbt’s profiles. yml out of those settings among other things. However, right now it only creates local
or env_execution profile, so if you want to use different settings amongst different environments, you should rather
use {{ env_var('VARIABLE') }} as a value and provide those settings as environment variables. E.g., by setting
those in your config/<ENV>/k8s.yml file, in envs dictionary:

config/base/bigquery.yml

method: oauth

dataset: "{{ env_var('GCP_DATASET') }1}"
project: my-gcp-project

threads: 1

(continues on next page)

2.4. Project configuration 15

data-pipelines-cli

(continued from previous page)

config/base/execution_env.yml
... General config for execution env ...

config/base/k8s.yml
... Kubernetes settings ...

config/dev/k8s.yml
envs:
GCP_DATASET: dev-dataset

config/prod/k8s.yml
envs:
GCP_DATASET: prod-dataset

2.4.1 dbt configuration

The main configuration is in config/<ENV>/dbt.yml file. At the moment it allows setting two values: * target
- should be set either to local or env_execution depending on where the tool is used. Local means running lo-
cally while env_execution means executing by the scheduler on the dev or prod environment. * target_type -
defines which backend dbt will use and what file dp will search for additional configuration (example: bigquery or
snowflake).

Additionally, the backend configuration file should be provided with a name depending on the selected target_type
(<target_type>.yml). For example setting target_type to bigquery dp will look for bigquery.yml files. This file
should consist of all configurations that will be used to build profile.yml. Example files for the production environment:

method: service-account

keyfile: "{{ env_var('GCP_KEY_PATH') }}"
project: gid-dataops-labs

dataset: presentation

threads: 1

timeout_seconds: 300

priority: interactive

location: europe-central?2

retries: 1

Variables

You can put a dictionary of variables to be passed to dbt in your config/<ENV>/dbt.yml file, following the conven-
tion presented in the guide at the dbt site. E.g., if one of the fields of config/<SNOWFLAKE_ENV>/snowflake.yml
looks like this:

schema: "{{ var('snowflake_schema') }}"

you should put the following in your config/<SNOWFLAKE_ENV>/dbt.yml file:

vars:
snowflake_schema: EXAMPLE_SCHEMA

and then run your dp run --env <SNOWFLAKE_ENV> (or any similar command).

16 Chapter 2. Community

https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-variables#defining-variables-in-dbt_projectyml

data-pipelines-cli

You can also add “global” variables to your dp config file $HOME/ .dp.yml. Be aware, however, that those variables get
erased on every dp init call. It is a great idea to put commonly used variables in your organization’s dp.yml. jinja
template and make copier ask for those when initializing dp. By doing so, each member of your organization will end
up with a list of user-specific variables reusable across different projects on its machine. Just remember, global-scoped
variables take precedence over project-scoped ones.

2.4.2 Airflow configuration

Airflow-related configuration is stored in config/<ENV>/airflow.yml file and is strongly connected to the Airflow
plugin: dbt-airflow-factory More information about this configuration can be found here

One important config from dp tool in this file is dags_path. It sets the URL to blob storage that is responsible for
storing projects DAGs with other artifacts.

2.4.3 Execution environment configuration

All configuration about how dbt is executed on the Airflow side is kept in execution_env.yml and <env type>.yml.
More information about these settings can be found here

2.4.4 Publication configuration

config/<ENV>/publish.yml file contains configuration about creating dbt packages for downstream projects and
publishing it to a git repository as a package registry.

Parameter Data type Description

repository string HTTPS link to repo that works as packages repository.

branch string Branch of the selected repository where packages are pub-
lished.

username string User name that will be presented as package publisher in GIT.

email string Email of the package publisher.

2.4.5 Data governance configuration

dp can sends dbt metadata to DataHub. All related configuration is stored in config/<ENV>/datahub.yml file. More
information about it can be found here and here.

2.4.6 Business Intelligence configuration

BI configuration is divided into two levels:
¢ General: config/<ENV>/bi.yml file
* Bl tool related: e.g. config/<ENV>/looker.yml

config/<ENV>/bi.yml contains basic configuration about BI integration:

2.4. Project configuration 17

https://dbt-airflow-factory.readthedocs.io/en/latest/configuration.html#airflow-yml-file
https://dbt-airflow-factory.readthedocs.io/en/latest/configuration.html#execution-env-yml-file
https://datahubproject.io/docs/metadata-ingestion#recipes
https://datahubproject.io/docs/generated/ingestion/sources/dbt

data-pipelines-cli

Parameter Data type Description

is_bi_enabled bool Flag for enable/disable BI option in dp.

bi_target string BI tool you want to working with (currently only Looker is
supported).

is_bi_compile bool Whether generate BI code in compile phase?

is_bi_deploy bool Whether deploy and push BI codes?

config/<ENV>/looker.yml contains more detailed configuration related to BI tool:

Parameter Data type Description

looker_repository string Git repository used by Looker project you want to integrate.
looker_repository_usernameg string Git config - username for operating with repository
looker_repository_email string Git config - user email for operating with repository
looker_project_id string Looker’s project ID

looker_webhook_secret string Looker’s project webhook secret for deployment
looker_repository_branch | string Looker’s repository branch for deploy new codes
looker_instance_url string URL for you Looker instance

2.5 Integration with environment

Data Pipelines CLI provides some sort of abstraction over multiple other components that take part in Data Pipeline
processes. The following picture presents the whole environment which is handled by our tool.

‘[’{ Copier % 6

A docker Looker

uses T
1empla\t95 builds and /

publish images export
Runs and pons

configurlgi I /models . [7) AirbYte
manages

connections
- /
v —Uses—>» D P
framework reads metadata °
T and publish _y, t
Analytics Gitlab / packages ® gl
Engineer sends / \

metadata
prepares

deploys DAGs :
/ and configuration keeps environment for
configuration 4

) B
e (O RY Kirttow

fsspec
object storage

18 Chapter 2. Community

data-pipelines-cli

2.5.1 dbt

dbt is currently the main tool that DP integrates with. The purpose of the DP tool is to cover dbt technicalities including
configuration and generates it on the fly whenever needed. At the same time, it gives more control over dbt process
management by chaining commands, interpolating configuration, and providing easy environments portability.

2.5.2 Copier

DP is heavily using Copier as templating tool. It gives a possibility to easily create new projects that are configured
automatically after a series of questions. It is also used to configure the working environment with required environment
variables.

2.5.3 Docker

One of the artifacts during building and publishing Data Pipelines are Docker’s images. Each created image contains
dbt with its transformation and scripts to run. Created images are environment agnostic and can be deployed in any
external configuration. Images are pushed to the selected Container Registry which configuration should be taken from
the environment (there should be a docker client configured).

2.5.4 Git

The Data Pipelines CLI can also publish created dbt packages for downstream usage into configured GIT repository.
It uses key-based authentication where the key is provided as parameter —key-path

2.5.5 Airflow
DP doesn’t communicate directly with Airflow, it rather sends artifacts to Object storage managed by Airflow and

dbt-airflow-factory library handles the rest. Created projects keep DAG and configuration required to execute on the
Airflow side.

2.5.6 Object storage
Configuration, Airflow DAG, and dbt manifest.json file are stored in Object storage for Airflow to be picked up and

executed. the DP uses fsspec which gives a good abstraction over different object storage providers. Currently, the
tools were tested with GCS and S3.

2.5.7 DataHub

The Data Pipelines CLI is able to send data to DataHub based on a recipe in configuration. The tool uses DataHub
CLI under the hoot.

2.5. Integration with environment 19

https://www.getdbt.com/
https://copier.readthedocs.io/en/stable/
https://www.docker.com/
https://git-scm.com/
https://dbt-airflow-factory.readthedocs.io/en/latest/
https://filesystem-spec.readthedocs.io/en/latest/
https://datahubproject.io/

data-pipelines-cli

2.5.8 Visual Studio Code

VS Code is one of the recommended by us tools to work with dbt. DP tool simplify integration of the created project
with the VS Code plugin for dbt management.

2.5.9 Airbyte

Under development

2.5.10 Looker

dp can generate lookML codes for your models and views, publish and deploy your Looker project

2.6 CLI Commands Reference

If you are looking for extensive information on a specific CLI command, this part of the documentation is for you.

2.6.1 dp

dp [OPTIONS] COMMAND [ARGS]...

Options

--version

Show the version and exit.

clean

Delete local working directories

dp clean [OPTIONS]

compile

Create local working directories and build artifacts

dp compile [OPTIONS]

20 Chapter 2. Community

https://code.visualstudio.com/
https://www.looker.com/

data-pipelines-cli

Options

--env <env>

Required Name of the environment
Default local

--docker-build
Whether to build a Docker image

--docker-tag <docker_tag>

Image tag of a Docker image to create

--docker-args <docker_args>

Args required to build project in json format

create

Create a new project using a template

dp create [OPTIONS] PROJECT_PATH [TEMPLATE_PATH]...

Options
--vcs-ref <vcs_ref>

Git reference to checkout
Arguments

PROJECT_PATH

Required argument

TEMPLATE_PATH

Optional argument(s)

deploy

Push and deploy the project to the remote machine

dp deploy [OPTIONS]

Options

--env <env>

Name of the environment
Default base

--dags-path <dags_path>
Remote storage URI

2.6. CLI Commands Reference

21

data-pipelines-cli

--blob-args <blob_args>
Path to JSON or YAML file with arguments that should be passed to your Bucket/blob provider

--docker-push
Whether to push image to the Docker repository

--datahub-ingest
Whether to ingest DataHub metadata

--bi-git-key-path <bi_git_key_path>

Path to the key with write access to repo

--auth-token <auth_token>

Authorization OIDC ID token for a service account to communication with cloud services

docs-serve

Generate and serve dbt documentation.

dp docs-serve [OPTIONS]

Options
--env <env>
Name of the environment
Default local

--port <port>

Port to be used by the ‘dbt docs serve’ command

Default 9328

generate

Generate additional dbt files

dp generate [OPTIONS] COMMAND [ARGS]...

model-yaml

Generate schema YAML using codegen or dbt-profiler

dp generate model-yaml [OPTIONS] [MODEL_PATH]...

22 Chapter 2. Community

data-pipelines-cli

Options
--env <env>
Name of the environment
Default local

--with-meta
Whether to generate dbt-profiler metadata

--overwrite
Whether to overwrite existing YAML files

Arguments

MODEL_PATH

Optional argument(s)

source-sq|l

Generate SQLs that represents tables in given dataset

dp generate source-sql [OPTIONS]

Options

--env <env>

Name of the environment
Default local

--source-yaml-path <source_yaml_path>
Required Path to the ‘source.yml’ schema file

Default /home/docs/checkouts/readthedocs.org/user_builds/data-pipelines-
cli/checkouts/0.24.0/docs/models/source/source.yml

--staging-path <staging_path>
Required Path to the ‘staging’ directory

Default /home/docs/checkouts/readthedocs.org/user_builds/data-pipelines-
cli/checkouts/0.24.0/docs/models/staging

--overwrite

Whether to overwrite existing SQL files

2.6. CLI Commands Reference

23

data-pipelines-cli

source-yaml|

Generate source YAML using codegen

dp generate source-yaml [OPTIONS] [SCHEMA_NAME]...

Options
--env <env>
Name of the environment
Default local

--source-path <source_path>
Required Path to the ‘source’ directory

Default /home/docs/checkouts/readthedocs.org/user_builds/data-pipelines-
cli/checkouts/0.24.0/docs/models/source

--overwrite
Whether to overwrite an existing YAML file

Arguments

SCHEMA_NAME

Optional argument(s)

init

Configure the tool for the first time

dp init [OPTIONS] [CONFIG_PATH]...

Arguments

CONFIG_PATH

Optional argument(s)

prepare-env

Prepare local environment for apps interfacing with dbt

dp prepare-env [OPTIONS]

24 Chapter 2. Community

data-pipelines-cli

Options

--env <env>

Name of the environment

publish

Create a dbt package out of the project

dp publish [OPTIONS]

Options

--key-path <key_path>

Required Path to the key with write access to repo with published packages

--env <env>

Required Name of the environment

Default base

run

Run the project on the local machine

dp run [OPTIONS]

Options

--env <env>

Name of the environment

Default local

seed

Run ‘dbt seed’

dp seed [OPTIONS]

Options

--env <env>

Name of the environment

Default local

2.6. CLI Commands Reference

25

data-pipelines-cli

template-list

Print a list of all templates saved in the config file

dp template-list [OPTIONS]

test

Run tests of the project on the local machine

dp test [OPTIONS]

Options

--env <env>

Name of the environment

Default local

update

Update project from its template

dp update [OPTIONS] [PROJECT_PATH]...

Options

--vcs-ref <vcs_ref>

Git reference to checkout

Arguments

PROJECT_PATH
Optional argument(s)

2.7 API Reference

If you are looking for information on a specific function, class, or method, this part of the documentation is for you.

26

Chapter 2. Community

data-pipelines-cli

2.7.1 data_pipelines_cli package

data-pipelines-cli (dp) is a CLI tool designed for data platform.

dp helps data analysts to create, maintain and make full use of their data pipelines.
Subpackages

data_pipelines_cli.cli_commands package

Subpackages

data_pipelines_cli.cli_commands.generate package

Submodules

data_pipelines_cli.cli_commands.generate.generate module
data_pipelines_cli.cli_commands.generate.model_yaml module

class MacroArgName (**kwargs)
Bases: dict

arg_name: str
deps_name: str
macro_name: str

generate_model_yamls(env: str, with_meta: bool, overwrite: bool, model_paths: Sequence[pathlib.Path]) —
None

data_pipelines_cli.cli_commands.generate.source_sql module

generate_source_sqls(env: str, source_yaml_path: pathlib.Path, staging_path: pathlib.Path, overwrite: bool)
— None

data_pipelines_cli.cli_commands.generate.source_yaml module

generate_source_yamls (env: str, source_path: pathlib.Path, overwrite: bool, schema_names: Sequence[str]) —
None

2.7. API Reference 27

data-pipelines-cli

data_pipelines_cli.cli_commands.generate.utils module

generate_models_or_sources_from_single_table(env: str, macro_name: str, macro_args: Dict[str, Any],
profiles_path: pathlib.Path) — Dict[str, Any]

get_macro_run_output (env: str, macro_name: str, macro_args: Dict[str, str], profiles_path: pathlib.Path) — str

get_output_file_or_warn_if_exists(directory: pathlib.Path, overwrite: bool, file_extension: str, filename:
Optional[str] = None) — Optional[pathlib.Path]

Submodules
data_pipelines_cli.cli_commands.clean module

clean() — None

Delete local working directories.

data_pipelines_cli.cli_commands.compile module

compile_project (env: str, docker_tag: Optional[str] = None, docker_build: bool = False, docker_build_args:
Optional[Dict[str, str]] = None) — None

Create local working directories and build artifacts.
Parameters
e env (str) — Name of the environment
* docker_tag (Optional [str]) — Image tag of a Docker image to create
* docker_build (bool) — Whether to build a Docker image
* bi_build — Whether to generate a BI codes
Raises DataPipelinesError —

replace_image_settings (image_tag: str) — None

data_pipelines_cli.cli_commands.create module

create(project_path: str, template_path: Optional[str], ves_ref: str) — None

Create a new project using a template.
Parameters
* project_path (str) — Path to a directory to create
* template_path (Optional [str]) — Path or URI to the repository of the project template

Raises DataPipelinesError — no template found in .dp.yml config file

28 Chapter 2. Community

data-pipelines-cli

data_pipelines_cli.cli_commands.deploy module

class DeployCommand (env: str, docker_push: bool, dags_path: Optional[str], provider_kwargs_dict:
Optional[Dict[str, Any]], datahub_ingest: bool, bi_git_key_path: str, auth_token:
Optional[str])

Bases: object
A class used to push and deploy the project to the remote machine.

auth_token: Optional[str]
Authorization OIDC ID token for a service account to communication with Airbyte instance

bi_git_key_path: str
blob_address_path: str
URI of the cloud storage to send build artifacts to

datahub_ingest: bool
Whether to ingest DataHub metadata

deploy() — None
Push and deploy the project to the remote machine.

Raises
¢ DependencyNotInstalledError — DataHub or Docker not installed
e DataPipelinesError — Error while pushing Docker image

docker_args: Optional[data_pipelines_cli.data_structures.DockerArgs]

Arguments required by the Docker to make a push to the repository. If set to None, deploy () will not
make a push

env: str

provider_kwargs_dict: Dict[str, Any]

Dictionary of arguments required by a specific cloud storage provider, e.g. path to a token, username,
password, etc.

data_pipelines_cli.cli_commands.docs module

docs (env: str, port: int) — None

Generate and serve dbt documentation.
Parameters
e env (str) — Name of the environment

e port (int) — Port to serve dbt documentation on.

2.7. API Reference 29

data-pipelines-cli

data_pipelines_cli.cli_commands.init module

init(config_path: Optional[str]) — None
Configure the tool for the first time.

Parameters config_path (Optional [str])— URI of the repository with a template of the config

file

Raises DataPipelinesError — user do not want to overwrite existing config file

data_pipelines_cli.cli_commands.prepare_env module

prepare_env (env: str) — None

Prepare local environment for use with dbt-related applications.

Prepare local environment for use with applications expecting a “traditional”” dbt structure, such as plugins to VS

Code. If in doubt, use dp run and dp test instead.

Parameters env (str)— Name of the environment

data_pipelines_cli.cli_commands.publish module

create_package() — pathlib.Path
Create a dbt package out of the built project.

Raises DataPipelinesError — There is no model in ‘manifest.json’ file.

publish_package (package_path: pathlib.Path, key_path: str, env: str) — None

data_pipelines_cli.cli_commands.run module

run(env: str) — None

Run the project on the local machine.

Parameters env (str)— Name of the environment

data_pipelines_cli.cli_commands.seed module

seed(env: str) — None

Run the project on the local machine.

Parameters env (str)— Name of the environment

30 Chapter 2

. Community

data-pipelines-cli

data_pipelines_cli.cli_commands.template module

list_templates() — None

Print a list of all templates saved in the config file.

data_pipelines_cli.cli_commands.test module

test (env: str) — None
Run tests of the project on the local machine.

Parameters env (str)— Name of the environment

data_pipelines_cli.cli_commands.update module

update (project_path: str, ves_ref: str) — None
Update an existing project from its template.

Parameters
» project_path (str) — Path to a directory to create

» ves_ref (str) — Git reference to checkout in projects template

Submodules
data_pipelines_cli.airbyte_utils module

class AirbyteFactory (airbyte_config_path: pathlib.Path, auth_token: Optionallstr])
Bases: object

A class used to create and update Airbyte connections defined in config yaml file

airbyte_config_path: pathlib.Path
Path to config yaml file containing connections definitions

auth_token: Optional[str]
Authorization OIDC ID token for a service account to communication with Airbyte instance

create_update_connection(connection_config: Dict[str, Any]) — Any

create_update_connections() — None
Create and update Airbyte connections defined in config yaml file

static env_replacer(config: Dict[str, Any]) — Dict[str, Any]
static find_config_file(env: str, config_name: str = 'airbyte') — pathlib.Path
request_handler (endpoint: str, config: Dict{str, Any]) — Union[Dict[str, Any], Any]

update_£file(updated_config: Dict[str, Any]) — None

2.7. API Reference

31

data-pipelines-cli

data_pipelines_cli.bi_utils module

class BiAction(value)
Bases: enum. Enum

An enumeration.
COMPILE =1
DEPLOY = 2
bi (env: str, bi_action: data_pipelines_cli.bi_utils.BiAction, key_path: Optional[str] = None) — None
Generate and deploy BI codes using dbt compiled data.
Parameters
e env (str) — Name of the environment
e bi_action — Action to be run [COMPILE, DEPLOY]
* key_path — Path to the key with write access to git repository
Raises NotSuppertedBIError — Not supported bi in bi.yml configuration

read_bi_config(env: str) — Dict[str, Any]
Read BI configuration.

Parameters env (str)— Name of the environment
Returns Compiled dictionary

Return type Dict[str, Any]

data_pipelines_cli.cli module

cli() — None

data_pipelines_cli.cli_configs module

find_datahub_config_file(env: str) — pathlib.Path

data_pipelines_cli.cli_constants module

DEFAULT_GLOBAL_CONFIG: data_pipelines_cli.data_structures.DataPipelinesConfig =
{'templates': {}, 'vars': {}}

Content of the config file created by dp init command if no template path is provided
IMAGE_TAG_TO_REPLACE: str = '<IMAGE_TAG>'
PROFILE_NAME_ENV_EXECUTION = 'env_execution'

Name of the dbt target to use for a remote machine

PROFILE_NAME_LOCAL_ENVIRONMENT = 'local'

Name of the environment and dbt target to use for a local machine

32 Chapter 2. Community

data-pipelines-cli

get_dbt_profiles_env_name(env: str) — str

Given a name of the environment, returns one of target names expected by the profiles.yml file.
Parameters env (str)— Name of the environment

Returns Name of the rarget to be used in profiles.yml

data_pipelines_cli.cli_utils module

echo_error (text: str, **kwargs: Any) — None

Print an error message to stderr using click-specific print function.
Parameters
* text (str)— Message to print
e kwargs —

echo_info (text: str, **kwargs: Any) — None

Print a message to stdout using click-specific print function.
Parameters
* text (str)— Message to print
* kwargs —

echo_suberror (text: str, **kwargs: Any) — None

Print a suberror message to stderr using click-specific print function.
Parameters
* text (str)— Message to print
e kwargs —
echo_subinfo (text: str, **kwargs: Any) — None

Print a subinfo message to stdout using click-specific print function.
Parameters
* text (str)— Message to print
e kwargs —

echo_warning (fext: str, **kwargs: Any) — None
Print a warning message to stderr using click-specific print function.

Parameters
* text (str)— Message to print
e kwargs —

get_argument_or_environment_variable (argument: Optionallstr], argument_name: str,
environment_variable_name: str) — str

Given argument is not None, return its value. Otherwise, search for environment_variable_name amongst envi-
ronment variables and return it. If such a variable is not set, raise DataPipelinesError.

Parameters
* argument (Optional [str]) — Optional value passed to the CLI as the argument_name

* argument_name (str)— Name of the CLI’s argument

2.7. API Reference 33

data-pipelines-cli

e environment_variable_name (str)— Name of the environment variable to search for
Returns Value of the argument or specified environment variable
Raises DataPipelinesError — argument is None and environment_variable_name is not set

subprocess_run(args: List[str], capture_output: bool = False) — subprocess.CompletedProcess[bytes]

Run subprocess and return its state if completed with a success. If not, raise SubprocessNonZeroExitError.
Parameters
* args (List[str]) — List of strings representing subprocess and its arguments
* capture_output (bool)— Whether to capture output of subprocess.
Returns State of the completed process
Return type subprocess.CompletedProcess[bytes]

Raises SubprocessNonZeroExitError — subprocess exited with non-zero exit code

data_pipelines_cli.config_generation module

class DbtProfile (**kwargs)
Bases: dict

POD representing dbt’s profiles.yml file.
outputs: Dict[str, Dict[str, Any]]

Dictionary of a warehouse data and credentials, referenced by target name

target: str
Name of the target for dbt to run

copy_config_dir_to_build_dir() — None
Recursively copy config directory to build/dag/config working directory.

copy_dag_dir_to_build_dir() — None
Recursively copy dag directory to build/dag working directory.

generate_profiles_dict (env: str, copy_config_dir: bool) — Dict|[str,
data_pipelines_cli.config_generation.DbtProfile]

Generate and save profiles.yml file at build/profiles/local or build/profiles/env_execution, de-
pending on env argument.

Parameters

e env (str) — Name of the environment

» copy_config_dir (bool)— Whether to copy config directory to build working directory
Returns Dictionary representing data to be saved in profiles.yml
Return type Dict[st